Bioenergy and the Environment Research


Bioenergy and the Environment research at UCLA seeks to develop advanced biofuels and biomaterials by genetically reengineering enzymes and reprogramming microbial cells using modern synthetic biology methods. Ongoing research seeks to reengineer microbes to convert plant material into fuels and chemicals, and is analyzing algal and other microbial genomes to discover new enzymes and pathways for energy production. We are also developing new statistical methods for more rapid discovery of useful genes, and designing and synthesizing novel biomaterials for CO2 capture. 


 

Faculty Research Summaries

Juli Feigon

Professor Juli Feigon and her research group study nucleic acid structure and specific recognition of nucleic acids by proteins. Her group focuses on determining the three-dimensional structures of DNA and RNA, and on investigating their interactions with various proteins and ligands, and to study nucleic acid folding.

 

James U. Bowie

James U. Bowie

Dr. James Bowie and his group are fascinated by protein structure, folding and stabilization. This interest has led them into three main areas: (1) learning how membrane proteins fold and how they can be stabilized; (2) the structures and biological functions of a biological polymer they discovered, that is formed by a very common protein module called a SAM domain; (3) developing and stabilizing enzyme pathways for the production of biofuels.

Robert T. Clubb

Robert T. Clubb

Professor Robert Clubb is developing methods to produce biofuels from sustainable plant biomass. Lignocellulosic plant biomass is an attractive feedstock for the sustainable production of biofuels, chemicals, and materials because it is renewable, highly abundant, and inexpensive. A major obstacle limiting its industrial use is the lack of low-cost technologies to degrade lignocellulose into its component sugars. Using synthetic biology methods, his group is engineering microbes to display surface multi-enzyme complexes that enable them to breakdown plant biomass efficiently. Ultimately, they hope to use this technology to create a consolidated bioprocessor, a single microbe that has the ability to convert lignocellulose into biofuels and other valuable commodities.

Jose Rodriguez

Prof. Rodriguez studies the complex architecture of biological systems - from single biomolecules to cellular assemblies - at high resolution. His work is largely based on diffraction phenomena and combines computational, biochemical and biophysical experiments. The development of new methods is central to this work, particularly using emerging technologies in cryo-electron microscopy, nano and coherent x-ray diffraction, and macromolecular design. Combined, these tools can reveal undiscovered structures that broadly influence chemistry, biology, and medicine.